人工智能首页 > AI资讯 > 正文

人工智能技术擅长在海量数据中寻找“隐藏”的因果关系

2019-10-25 阅读888次

  人工智能技术(机器学习算法)擅长在海量数据中寻找“隐藏”的因果关系,能够快速处理科研中的结构化数据,因此得到了科研工作者的广泛关注。人工智能在材料、化学、物理等领域的研究上展现出巨大优势,正在引领基础科研的“后现代化”。

人工智能技术擅长在海量数据中寻找“隐藏”的因果关系

  以物理领域为例,人工智能的应用给粒子物理、空间物理等研究带来了前所未有的机遇。为寻找希格斯玻色子(上帝粒子),进一步理解物质的微观组成,欧洲核子研究中心(CERN)主导开发了大型强子对撞机(LHC)。LHC是目前世界上最大的粒子加速器,它每秒可产生一百万吉字节(GB)的数据,一小时内积累的数据竟然与Facebook一年的数据量相当。

  有一些研究人员就想到,利用专用的硬件和软件,通过机器学习技术来实时决定哪些数据需要保存,哪些数据可以丢弃。事实证明,机器学习算法可以至少做出其中70%的决定,能够大大减少人类科学家的工作量。

  尽管人工智能商业化发展更容易受关注,但人工智能在基础科研中的应用,却更加激动人心。因为社会生产力的变革,归根结底在于基础科研的进一步突破。我们或许再也回不到有着牛顿、麦克斯韦和爱因斯坦等科学“巨人”的时代。

  在那个时代,“巨人”们可以凭借着超越时代的智慧,在纸张上书写出简洁优美的定理,或者设计出轰动世界的实验。像这样做出伟大工作的机会或许不多了,在这个时代,更多需要的是通过大量实验数据来获取真理的工作。

  大到宇宙起源的探索,小到蛋白质分子的折叠,都离不开一批又一批科学家们前赴后继、执着探索。人工智能技术的应用,或许能帮助蓝色星球的科学家们摆脱无穷无尽实验的痛苦,加速重大科学理论的发现,将人类文明提升到新的台阶。


随意打赏