人工智能首页 > AI资讯 > 正文

医学人工智能应用现状和先例

2019-09-03 阅读888次

  医学人工智能领域展开了很多应用实践,显示了人工智能在医学领域具有很大的潜力。但是总体来看,医学人工智能并不能替代医生,而且现阶段的落地范围还是呈散点式、单一式的应用。 医学人工智能应用现状我们先来看一些当前医学人工智能应用的典型例子:

医学人工智能应用现状和先例

  一是目前已经实现的 CDSS (临床辅助决策系统)的落地应用,主要基于医学知识图谱和临床规则,具有较大的适用疾病谱系。比如,在门诊就医时输入肥胖、多尿、贪食等患者主诉,根据这些症状描述,系统就可以疑似诊断为二型糖尿病。由于医学知识图谱和临床规则在底层支撑了症状和疾病的关联,在确定为糖尿病后,系统还能推荐下一步检查项目、用药等诊治选择。

  二是基于大数据建模型做鉴别诊断,这与医学知识图谱和临床规则不同。比如,我院急诊科提出一个需求:在急诊胸痛患者里,有三类疾病的死亡率非常高,分别是急性冠脉综合征、肺栓塞和主动脉夹层。其中,急性冠脉综合征和主动脉夹层在临床上的症状表现很相似,但两种疾病的治疗方法完全不同。如果仅根据症状描述很难做出鉴别诊断,所以通常的传统方法是进行造影检查,但造影时间比较长而且还有创伤,可否仅根据容易快速获得的化验结果进行鉴别诊断。根据此需求,我们做了一个尝试。就是根据既往两类病例的化验结果数据建立一个机器学习模型进行训练,发现可以有较好的分类表现。将这一模型嵌入到医生工作站,就可以使得医生工作站具备人工智能的辅助诊断能力。

  三是疾病风险预测。比如一部分糖尿病患者可能会发生视网膜病变。那么,是否能根据某些检查指标或生命体征数据来预测患者发生视网膜病变的可能性呢?我院基于2万多例糖尿病患者的数据建立了一个模型,找到了预测视网膜病变的主要风险因素,包括某些化验结果、年龄、生命体征等指标。

  四是在医学影像方面。比如,我院展开了针对肝脏肿瘤的影像识别研究。首先基于CT影像采用深度学习方法进行肝脏分割,进一步将肝脏自动模拟人工方法分成八段,在此基础上进行肿瘤识别和部位标注,最后用于辅助诊断和手术方案的评估。

  五是皮肤病理图像的识别研究。我院开展的研究是针对皮肤的黑色素瘤,主要通过人工标注后训练机器自动识别病理切片是否包含皮肤黑色素瘤的细胞。经过测试,我们发现目前机器标注和人工标注的重合度已经非常高,超过了普通医生对黑色素瘤的诊断水平。

  六是临床智能输血决策系统。我院基于8万多例输血病例建立红细胞输注量个性化预测评估模型,并将该模型嵌入医生工作站。在手术输血的申请模块增加一个功能键,实现医生输血申请的智能化管控,以防止过量或不必要的输血。


随意打赏