人工智能首页 > AI资讯 > 正文

关于人工智能机器学习发展的五大趋势

2019-07-03 阅读888次

  当机器学习已经真正成为商业词汇中的重要组成部分,并为众多企业带来了广泛且可观的潜在发展空间。这种巨大的机遇意味着将有更多传统及初创企业在2017年开始自己的机器学习探索之旅。相当一部分立足机器学习领域诞生的初创企业则胸怀“独角兽”雄心踏上征程,然而必须承认,他们自认为能够利用神奇的新型机器学习算法实现的通用型、低成本、可扩展解决方案往往只是种一厢情愿。

关于人工智能机器学习发展的五大趋势

  一、机器学习需要快速迭代

  许多从业者强调了迭代和持续改进对机器学习发展的重要性。与软件非常相似,机器学习想要得到改善就需要持续迭代和定期更新。那些大规模应用机器学习的企业建议一个机器学习新项目最好从没有机器学习或只有简单机器学习基础上开始。正如一位从业者所说的那样,你不会想花一年时间投资一个复杂的深度学习解决方案,因为在部署投资深度学习之后你就会发现一个更简单的非深度学习方法可以胜过它!

  机器学习快速迭代还需要优化基础架构以支持它的部署。这就意味着成功的机器学习基础架构需要包括自动部署、模块化、微服务的使用,以及避免在早期进行过多的细粒度优化。

  二、不同于软件问题,机器学习问题有自己的特殊性

  OpML大会上的展示为我们展示了一个有意思现象,那就是机器学习的错误不仅能绕过常规检查,还似乎是一种更好的生产方式。例如一个机器学习模型即便是在常规检查中失败了并产生了错误的结果,其最终也有可能会提高性能。

  在生产中检测机器学习错误需要专门的技术,如模型性能预测器,与非机器学习基线的比较,可视调试工具和操作机器学习基础设施的度量驱动设计。Facebook、Uber和其他经验丰富的大规模机器学习组织强调了机器学习特定生产测量的重要性,这些测量从健康检查到机器学习特定(如GPU)资源利用率。

  三、机器学习有丰富的开源生态系统

  机器学习拥有用于模型开发的丰富的生态系统(TensorFlow、ScikitLearn、Spark、Pytorch、R等)。OpML大会向我们展示了机器学习开源生态系统如何快速发展并如何成为大型和小型公司都使用的强大的公开工具。例子很多,包括用于治理和促进合规性的Apache Atlas,用于Kubernetes的机器学习操作Kubeflow,用于生命周期管理的MLFlow和用于监控的Tensorflow。

  传统企业供应商开始集成这些开源软件包,为其客户提供完整的解决方案。一个显著的例子是思科对Kubeflow的支持。此外,具有一定规模的网络公司正在开源其核心基础设施,以驱动他们的机器学习研究,例如来自领英的机器学习谱曲工具TonY。

  随着这些工具越来越多,从业者也在记录者端到端的应用案例并创建可能被应用的更好的设计样式。

  四、基于云的服务和软件使机器学习生产更加简单

  对于尝试在生产中部署机器学习的团队来说,即使在流程的每个阶段都有可用的开源工具,这个过程也是困难重重的。云则提供了另一种选择。由于资源管理(例如机器配置、自动缩放、弹性拓展等)由云后端处理,因此云部署可以更简单。当使用加速器(GPU、TPU等)时,管理生产资源变得不太容易,而云服务就是一种通过利用云厂商的资源来优化加速器使用的方法。

  云部署还为IT公司提供了一个解决方法,以便在没有大型内部基础架构的情况下尝试机器学习部署。即便是内部已经部署机器学习的企业也开始转向提供类似于云服务的自助机器学习模型,这样就能够满足组织内多个团队和部门的需求。

  五、技术影响力:企业基于网络部署大规模机器学习

  大型企业如Linkin、Facebook、Google等是第一批机器学习的实践者,它们必须从头开始构建机器学习所需要的所有基础设施,以便从机器学习中获得经济收益。这些企业现在不仅开放他们的代码,还分享他们来之不易的实践经验和学习成果,所有的这些对于一般企业来说都能够从中获益。


随意打赏